	1	(a)	State the correct SI unit for pressure Pascal // Pa // Nm-2	Reject : kPa // pascal
		(b)	Underline the correct statement in the bracket Pressure at point X is same as pressure at point Y	Reject : selain garis
-		(c)	State the physics principle involved. Pascal's // Prinsip Pascal // Pascal	Reject : pascal
		(d)	State one application correctly Hydraulic jack / brake / system / arms / press (machine) / car system / chair	Reject : Toothpaste // car brake

2	(a)	State the meaning of real image correctly Image that can be formed / seen on screen	
	(b) (i)	Determine image distance correctly (40.0 - 30.0) cm // 10.0 cm	Reject : No decimal point
	(b) (ii)	Calculate focal length correctly 1/f = 1/30 + 1/10 f = 7.5 cm // 7.50 cm	
	(c)	State the change of image correctly Image is brighter	Reject : clearer

3	(a)	Name the process involved correctly Thermionic emission	Reject: wrong spelling
	(b) (i)	Calculate maximum velocity of electron correctly $(1.6 \times 10^{-19})(1500) = 1/2 (9.11 \times 10^{-31})(v^2)$ $v = 2.295 \times 10^7 \text{ m s}^{-1}$	
	(b)(ii)	Complete the path correctly	Z×
	(c)	State what happen Deflect upwards greater / more/ bigger/ higher / increase Give reason correctly Stronger electric field	

4	(c)(i)	Compare distance A to B and C to D correctly Distance AB is longer / greater / bigger than CD
	(c) (ii)	Label the symbol correctly Area AB - X Area CD - Y
		Explain your answer correctly
	(c)	X maximum velocity because distance / path AB is longer // Y minimum velocity because distance/ path CD is shorter // gravitational force greater at AB The time for both motion of planet K from A to B and C to D is the same

		State the meaning correctly 1.5 J work is done /1.5 J of energy required /	
5	(a)	transferred by an electrical source to move 1C of charge in a complete circuit.	
	(b) (i)	Compare arrangement of batteries Arrangement of batteries in 5.1 is series //(arrangement of batteries in 5.2 is parallel	
	(b)(ii)	Compare the total e.m.f. of batteries correctly Total e.m.f. in Diagram 5.1 is greater // vice versa	
	(b) (iii)	Compare the gradient of the graph correctly Gradient of the graph in Diagram 5.1 is greater // vice versa	Reject : lebih cerun // steeper

5	(c)(i)	State the relatioship of batteries arrangement and e.m.f correctly When the arrangement of batteries is series, the total e.m.f. Is greater // vice versa	
	(c)	State relationship of batteries and gradient correctly When arrangement of batteries is series, the gradient is bigger // vice versa	Reject : steeper
	(d)(i)	Calculate internal resistance correctly $E = V + Ir$ $6 = 5.8 + (0.5 r)$ $r = 0.4 \Omega$ $(q. w. 4)$	
	(d)(ii)	State what happen to internal resistance correctly Increase // bigger	Reject : more

6	(a)	Underline the correct answer(perpendicular / parallel)	
	(b) (i)	Compare angle of incidence correctly Angle of incidence in both Diagrams are the same	
	(b)(ii)	Compare wavelength correctly Wavelength in Diagram 6.1 is greater // vice versa	
	(b)	Compare frequency correctly Frequency in Diagram 6.1 is lower / smaller // vice versa	
	(c)	Relate wavelength and frequency correctly The higher the wavelength the lower the frequency // vice versa Reject:	

6	(d)	Name the wavelength phenomenon correctly Reflection of water wave	Reject : reflaction
	(e) (i)	Give reason why ultrasonic is used correctly High frequency // high energy // can travel / move / propagate further	Reject : penetrate further
	(e)(ii)	Calculate wavelength correctly $1500 = (6.0 \times 10^{5})$ $\Rightarrow = 0.0025 \text{ m} @ 2.5 \times 10^{-3} \text{ m}$ $(a.w.y)$	

7	(a)	State the meaning correctly Quantum of energy is discrete energy packet and not a continuous energy.
	(b)(i)	Determine photon energy correctly E = [(6.63 x 10 ⁻³⁴)(3 x 10 ⁸)] / (486 x 10 ⁻⁹) = 4.0926 x 10 ⁻¹⁹ J @ 4.093 x 10 ⁻¹⁹ J
	(e)(ii)	Calculate output power correctly P = nhf = 3.37 x 10 ¹⁸ x 4.0926 x 10 ⁻¹⁹ = 1.3792 W @ 1.379 W (a.w. w)

7	(c)(i)	Work function small State reason correctly Less energy required for a photoelectron to be emitted from metal surface // photoelectric occur easily // photoelectron release easily	
	(c) (ii)	State the specification correctly Big(surface area) State reason correctly Received more light // Expose to more light // photoelectron emitted // more sunlight can illuminated	illoid ligitt// laigei
	(d)	Choose the most suitable solar panel A	

8	(a)	Tick the correct answer The rate of change of momentum	
	(b)	Calculate impulsive force correctly F = (mv - mu)/t = [60 (0 - 5)] / 0.8 = - 375 N (4.wu)	
		State the modification correctly Thickness of mattress higher // thicker, State reason correctly Longer time of impact // reduce / lower impulsive force	Reject : thick // reduce injury // absorbed impact

8	(c)(ii)	Suggest the material correctly Natural fiber // rubber // latex // sponge //polyfoam // polyester // memory foam // cotton // wool State reason correctly Longer time impact // smaller impulsive force // not easy to tear	Reject: soft material // reduce injury // absorbed impact // nylon // absorbed force
		Suggest the surface area correctly Higher // larger // bigger // wider	
	(c)	State reason correctly More space to land // prevent from fall off to ground when bounce // prevent from stumble to ground	Reject: reduce injury // land safely

9	(a)	State the meaning of half life Time taken for a sampel of radioactive nuclei to decay to half of its initial number	
	(b)	Explain Uranium decay process correctly - Amount of Uranium decreases with time - Decay mass / mass of Lead-206 increase - Undecayed mass / mass of Uranium- 238 decreases - The amount of Uranium become half at T1/2 - The ratio of Lead-206 to Uranium-238, can determine the age of substance	Max: 4 M

9 (c)(i) Calculate time correctly

$$t = 2 \times 4.5 \times 10^9 = 9.0 \times 10^9 \text{ years}$$

Calculate the age correctly

Undecayed Uranium = $100\% - 0.73\% = 99.27\%$

N = $\begin{pmatrix} 1 \\ 2 \end{pmatrix}^{1}$ No

 $\begin{pmatrix} 1 \\ 3 \end{pmatrix}^{2}$ No

 $\begin{pmatrix} 1 \\ 4 \end{pmatrix}^{2}$ No

 $\begin{pmatrix} 1 \\$

Réject: Most ancient

Aspect	Characteristic	Reason
Quantity of Argon	Low 1	More stable // nukleus become stable
Quantity of Potassium High Nukleus // nukleus become		Lower quantity of undecayed nukleus // nukleus become stable
Ratio of potassium to Argon	High /5	Greater decay // more decay occurs // nuclei become stable
Activity of radioactive	Low 7	Rock is more stable // rock not radioactive
Choice :	Q / 1	Low quantity of Argon, High potassium, High ratio, low activity

Aspect	Characteristic	Reason
Quantity of	High	Bea Argun - 40 was found
Argon		original humber
Quantity of	# Low	Potassium - 40 is already
Potassium		decayed from its original
Ratio of Potassium	Low	Argon - 40 is more than
to Argon		Potnssium - 40
Radioactive	High	Decay much more faster until
activity		to be Potassium - 40
		\$
The most ancient n	ock is rock P	recause it is high quantity of Argon
		to of Potassium to Argon and trigh

10	(a)(i)	Name the concept correctly Electromagnetic induction	
	(a)(ii)	State one factor correctly Increase speed / motion / movement of magnet/	Refer Diagram
		Explain lighting up the bulb correctly	
	(b)	 1-(When shaken the coil will cut the magnetic flux 2- e.m.f is induced in the coil 3- induced current flow in the circuit 4- kinetic energy change to electrical energy 5. The greater the cutting / changing of magnetic flux, the greater the induced emf / induced electric current 6- more charge stored in capacitor on the circuit board. 	Max: 3M Reject: light up longer time Wajib 1 dan 2

10	(c)(i)	Determine the ratio of primary turns to secondary turns $\frac{NP}{NS} = \frac{240}{5} \Rightarrow \frac{NP}{48} : \int \frac{NP}{NS} = \frac{48}{10}$
	(c)(ii)	Calculate the secondary current correctly P = VI 5 = 5I I = 1 A
	(c)	Calculate the input power correctly Power input = Power output = 5 W

Re	にいい	6	Ra	+	W	P		fas	ter	
							•			

Aspect	Characteristic	Reason
Material of stove top	Ceramic	High specific heat capacity // low increase in temperature // Easy to be clean
Material of coil	Copper	Low resistivity // low resistance // greater current flow
Coil oxidation rate	Low	Not easy to rust // not easy to oxidized
Source of power supply	AC/	Produced changing of magnetic flux
Choice :	M 9	Ceramic top, copper coil, low oxidation rate and AC power supply

Aspect	Characteristics	Reason
material of stove	ceramic	-High specific heat capacity
material of coil	Nichrome coil	-absore more heat -Heat more faster in Q
coil oxidation rate	e Low 5	Not oxidise slow rate of oxidising.
Power supply	80/7	- can use more longer continuous power supply

(d)	Aspects	Characteristics	Reason	
	Material of	Ceramic	It is a good heat	
	got svote		insulator	
	Material of	Nichrome	Good heat conductor	
7	coil	Made and Marke in		
_		S	The second second	
	Coil oxidation	Low	To reduce the chance	
	rate		to get rust	
	Power supply	Alternating	Can supply power	
		current	more efficient	
	Induction cooker	the most suitable	. It is because it use	
	ceramic as the	moverial of the stove	top which is a good	
	heat insulator	hichrome as the mal	gial of the coil that can	' /
	conduct heat e	efficiently, has low,	oxidation rate that can	
	reduce the rate	of rusting and use alter	oxidation rate that can current power supply which	
	con supply cut	rrent more efficient.	- 1 - 1 m	

11	(a)	State the meaning of pressure correctly Force per unit area // ratio of force to unit area	
		Observed and compare 1-Volume of trapped air in Diagram 11.1(a) is higher than Diagram 11.1(b) 2-Reading of pressure gauge in Diagram 11.1(a) is lower than Diagram 11.1(b)	
	(b)	3-Reading of thermometer in Booth Diagrams are equal / same Relate the volume and the pressure exerted The greater the volume of trapped air, the lower the pressure exerted.	Reject : 11.1(a) > 11.1(b)
		Name the law involved. Boyle's Law	

11	(c)	Explain the above situation 1-there is thermal Contact betweeen the boy and the fire 2- heat transfer from fire to the body of the boy 3- heat transfer through radiation from fire to the boy 4- temperature of body increases 5- net heat transfer is not equal to zero 6- temperature of the fire is not equal to body temperature of the boy. Thermal equilibrium is not achived.	Max : 4M
----	-----	--	----------

	Pei: nainte	sion hothess
Aspect	Modification	Reason
Inner layer	High specific heat capacity	Longer time to increase temperature.
Inner layer	Made from heat insulator // polistyrene	Prevent heat lost to surrounding
Inner layer	Shiny colour	Heat reflected to the food
Outer layer	Many layers	Reduce heat loss to the surrounding
Outer layer	Polyester / 1	Waterproof // not wet easily

